Matrix Element for two spin 1/2 particles to two spin 1/2 particles scattering

eg. e+e- scattering
(Postgraduate Relativistic Quatum Mechanics Course: Dr R.Henderson)

The matrix element for the two spin half currents J*J,, is
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We need V;} in order to calculate the amplitude VZ}V; s for this
process. Ignoring the integration for the moment we calculate
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Thus we finally have a complete expression for the matrix
element squared:
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The wavefunction consists of a space part and a spinor com-
ponent ¢ = Ue “F=P¥)  If the matrix elements are integrated
over the space and time variables the spacial parts of the wave-
function gives the following delta functions

0(Es+ Ey — FEy — Es)
from the time integral and
(P3+Py,—P; —Py)

from the space integral which conserve energy and momen-
tum respectively. This removes the spacial part of the wave-
function and leaves U the spinor part alone. The expression for
the matrix element square can then be reexpressed as:
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This form of the matrix element squared would be appror-
iate if we were colliding fully polarised beams and detecting a
single polarized state. However in real experiments we are ac-
tually colliding unpolarized beams and detecting all final states
irrespective of their polarization. This requires that we sum the
matrix element over the final states and average over the initial
states. Thus we must calculate the following:
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Where the sums over )\, are over the spin states of the nth
particle.
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The underbraced part of this equation is shown with its ex-
plcit summation or contraction variables from « to §. The over-
braced section contains the only dependence on A4 so the sum
over that variable can be moved to the new position which gives
the well known positive energy projection operator which can
be written as follows:

— 754 +m
Z Uaglay = ( 2m
A 4 By

The indices 30 remind us that this projection operator is a 4x4
matrix.
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The underbraced part of this equation contains the equation’s
only dependence on Ay so the summation sign can be moved as
shown below.



This expression can be rearraged as the Usy; is a single scalar
number (not a matrix!) and so can be moved from the end of
the equation and placed at the front.
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An equivalent projection operator is then formed for particle
2 by the underbraced section.
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Thus the total underbraced section can now be written as

follows:
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This is just a trace of a product of matrices dependent on two

indices v and p and can be written as the function of particles
2 and 4 as L(2,4)""

L(2,4)" =

Arngmy Tr([(py +m)y" (b, +m)y"]

Thus the original equation for VZJ}Vz f can now be written as
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By inspection the underbraced part can be replace by a sim-
ilar traces function L(1,3),,,.
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Thus finally we can write VZ}VZ 7 as the product two traces (re-
quiring ms = my = me+ = my for one current m; = mg =
me- = my for the other in the case of eTe™ scattering):

ViV, = L(2,4)"L(1,3),,

which is:
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To calculate the matrix element explicitly the traces must be
evaluated:

L2 = Tr{(py +m)y"(py +m)y"]
= Tr [pyy Py + Py may" + may" Py +ma’y"]

At this point we need the following trace theorems:
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To match the indices used in the matrix element theorem 3

must be re-expressed as:
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Thus in the expanded list of traces we can immediately set the

terms with two odd products of 7’s equal to zero from theorem
1 and the using 3 and 2:
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Thus we have the expression from the L(2,4),, term
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So by inspection we have L(1,3),,:
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So it is now possible to write the expression
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There are 4x4=16 terms in the result which is easy to see
from the following table:
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Since
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VIiVip = ————L(2,4)""L(1,3),
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—2mi(pa - pa) — 2m3(py - ps) + dmims)]
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= Sgttne [(p1 - p2)(p3 - pa) + (p1 - Pa) (P2 - P3)

—m3(pa - pa) — m3(p1 - p3) + 2mim3)

Thus the full manifestly covariant ete™ scattering matrix el-
ement (p; and py incoming and p3 and py outgoing e and e~
momenta respectively):
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