
Matrix Element for two spin 1/2 particles to two spin 1/2 particles scattering
eg. e+e- scattering

(Postgraduate Relativistic Quatum Mechanics Course: Dr R.Henderson)
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The matrix element for the two spin half currents JµJµ is

Vif =
∫
ψ4γ

µψ2(
e2

q2
)ψ3γµψ1 dx dt

We need V †
if in order to calculate the amplitude V †

ifVif for this
process. Ignoring the integration for the moment we calculate

V †
if :
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Thus we finally have a complete expression for the matrix

element squared:

V †
ifVif = (ψ1γνψ3
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1since γµ† = γ0γµγ0



The wavefunction consists of a space part and a spinor com-
ponent ψ = Ue−i(Et−px). If the matrix elements are integrated

over the space and time variables the spacial parts of the wave-
function gives the following delta functions

δ(E3 + E4 −E1 − E2)

from the time integral and

δ(P3 + P4 − P1 − P2)

from the space integral which conserve energy and momen-
tum respectively. This removes the spacial part of the wave-

function and leaves U the spinor part alone. The expression for
the matrix element square can then be reexpressed as:
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This form of the matrix element squared would be appror-

iate if we were colliding fully polarised beams and detecting a
single polarized state. However in real experiments we are ac-

tually colliding unpolarized beams and detecting all final states
irrespective of their polarization. This requires that we sum the
matrix element over the final states and average over the initial

states. Thus we must calculate the following:



1

4

∑

λ1

∑

λ2

∑

λ3

∑

λ4

(U1γνU3

(
e2

q2

)
U2γ

νU4)(U4γ
µU2

(
e2

q2

)
U3γµU1)

Where the sums over λn are over the spin states of the nth
particle.
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The underbraced part of this equation is shown with its ex-

plcit summation or contraction variables from α to δ. The over-
braced section contains the only dependence on λ4 so the sum

over that variable can be moved to the new position which gives
the well known positive energy projection operator which can
be written as follows:
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(
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The indices βδ remind us that this projection operator is a 4x4
matrix.

e4

4q4

∑

λ1

∑

λ3

U1γνU3

∑

λ2

U2αγ
ν
αβ

(
p/4 +m

2m4

)

βγ

γµ
γδU2δ

︸ ︷︷ ︸
U3γµU1

The underbraced part of this equation contains the equation’s

only dependence on λ2 so the summation sign can be moved as
shown below.
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This expression can be rearraged as the U2δ is a single scalar

number (not a matrix!) and so can be moved from the end of
the equation and placed at the front.
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An equivalent projection operator is then formed for particle

2 by the underbraced section.
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Thus the total underbraced section can now be written as
follows:
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This is just a trace of a product of matrices dependent on two

indices ν and µ and can be written as the function of particles
2 and 4 as L(2, 4)νµ:

L(2, 4)νµ =
1

4m2m4
Tr [(p/2 +m)γν(p/4 +m)γµ]

Thus the original equation for V †
ifVif can now be written as
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By inspection the underbraced part can be replace by a sim-

ilar traces function L(1, 3)νµ.

L(1, 3)νµ =
1

4m1m3
Tr [(p/1 +m)γν(p/3 +m)γµ]

Thus finally we can write V †
ifVif as the product two traces (re-

quiring m2 = m4 = me+ = m2 for one current m1 = m3 =

me− = m1 for the other in the case of e+e− scattering):

V †
ifVif = L(2, 4)νµL(1, 3)νµ

which is:
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ν(p/4 +m)γµ]Tr [(p/1 +m2)γν(p/3 +m)γµ]

To calculate the matrix element explicitly the traces must be

evaluated:

L(2, 4)νµ = Tr [(p/2 +m)γν(p/4 +m)γµ]

= Tr
[
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]

At this point we need the following trace theorems:



1) Tr[odd number of γ’s] = 0

2) Tr[γµγν ] = 4gµν

3)

Tr[γαγβγµγν ] = −Tr[γβγαγµγν ] + 2gαβTr[γµγν ]

−Tr[γβγαγµγν ] = Tr[γβγµγαγν ] − 2gαµTr[γβγν ]

Tr[γβγµγαγν ] = −Tr[γβγµγνγα] + 2gανTr[γβγµ]

−Tr[γβγµγνγα] = −Tr[γαγβγµγν ]

⇒ 2Tr[γαγβγµγν ] =

2gαβTr[γµγν ] − 2gαµTr[γβγν ] + 2gανTr[γβγµ]

⇒ Tr[γαγβγµγν ] = 4[gαβgµν − gαµgβν + gανgβµ]

To match the indices used in the matrix element theorem 3

must be re-expressed as:

Tr[γαγνγβγµ] = 4[gανgβµ − gαβgνµ + gαµgβν]

Thus in the expanded list of traces we can immediately set the
terms with two odd products of γ’s equal to zero from theorem

1 and the using 3 and 2:
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Thus we have the expression from the L(2, 4)νµ term
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So by inspection we have L(1, 3)νµ:
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So it is now possible to write the expression
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There are 4x4=16 terms in the result which is easy to see
from the following table:
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Since
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Thus the full manifestly covariant e+e− scattering matrix el-

ement (p1 and p2 incoming and p3 and p4 outgoing e+ and e−

momenta respectively):
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